

HIGH-GRADE EXTENSIONS TO DISCOVERY AT SAN JOSE MINE

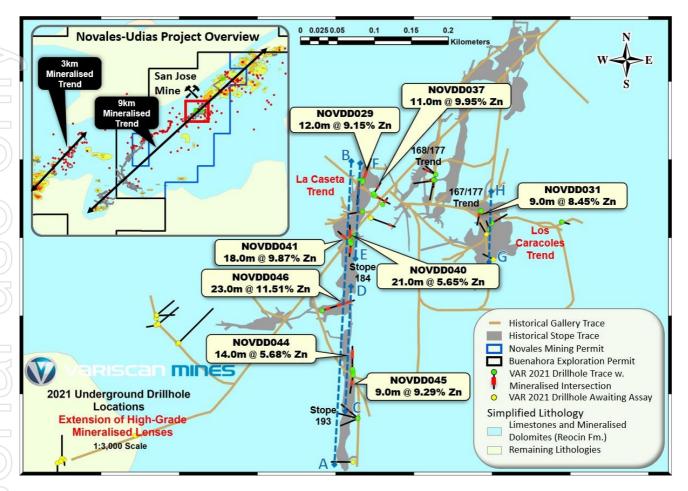
Highlights

• Underground drilling has intersected further high-grade zinc mineralisation in the Central Zone of the San Jose Mine

La Caseta Trend

- +400m southward extension to the recent discovery of a new laterally extensive,
 high-grade mineralised lens below the main gallery level, which remains open:
 - DDH NOVDD046: 23m @ 11.51% Zn + 3.72% Pb
 - O DDH NOVDD041: 18m @ 9.87% Zn + 3.24% Pb
 - O DDH NOVDD037: 11m @ 9.95% Zn + 5.58% Pb
 - O DDH NOVDD029: 12m @ 9.15% Zn + 4.03% Pb
 - O DDH NOVDD040: 21m @ 5.65% Zn + 0.70% Pb
 - O DDH NOVDD042: 9m @ 10.67% Zn + 1.76% Pb
 - O DDH NOVDD045: 9m @ 9.29% Zn + 0.46% Pb
 - O DDH NOVDD044: 14m @ 5.68% Zn + 0.34% Pb
- Significant potential for further extensions with infill drilling also warranted

Los Caracoles Trend


- Confirmation of mineralised lenses above main gallery level:
 - DDH NOVDD031: 9m @ 8.45% Zn + 2.10% Pb
 - O DDH NOVDD035: 5m @ 5.12% Zn + 0.07% Pb
- Below gallery level is open and merits further drilling to test for lower lenses

Drilling Programme Update

- Drilling in South West and Central Zones of San Jose Mine completed
- Assay results for an additional 30 drillholes pending
- Samples contain occurrences of positive visual zinc mineralisation
- Follow up drilling campaigns being refined and expected to re-start shortly

Figure 1. Plan view of selected mineralised intersections in the La Caseta and Los Caracoles Trends

Variscan's Managing Director & CEO, Stewart Dickson said,

"It is very pleasing to follow up the discovery of new high-grade mineralised lenses below the main gallery with another excellent set of drill results. These results extend the lower lens below the La Caseta Trend to over 400m, which remains open. They also confirm the presence of high-grade mineralisation in the Los Caracoles Trend which has significant potential for discovering additional lenses. In particular drilling to test for lower lying lenses is justified.

We will be following up these exciting drill results with further assays from drilling over the South West Zone, which is where mine activity ceased in the late 1990s, when zinc prices were approximately 4 times lower than today. We are optimistic that further drilling may yield promising results and if replicated could provide considerable scale and tonnage potential. With significant infrastructure in place, the Novales-Udias project, centred on the San Jose Mine has all the constituent elements to advance quickly and seriously consider re-start mining opportunities in due course".

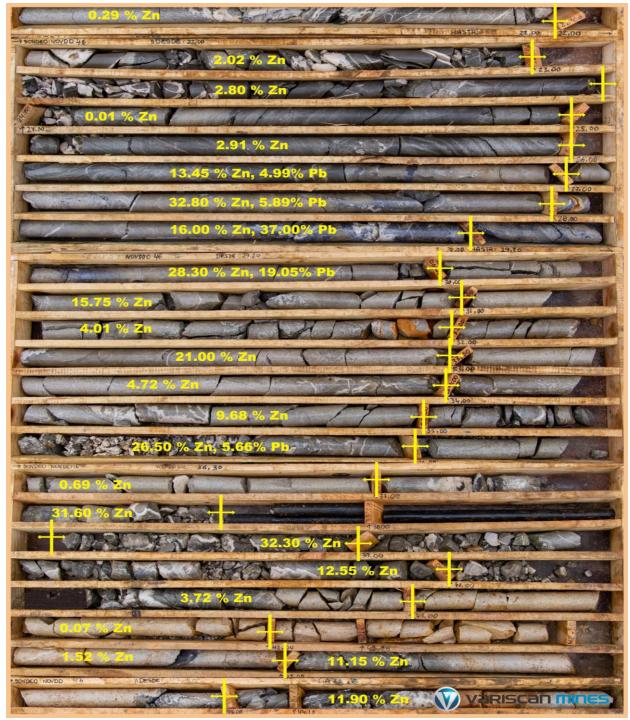
Variscan Mines Limited ("Variscan" or the "Company" or the "Group") (ASX:VAR) is pleased to announce that the assay results from underground drilling at the San Jose Mine have extended the discovery of mineralised lenses below the La Caseta Trend and confirmed high grade mineralisation on the Los Caracoles Trend. Both are areas of known mining activity in two separate north-south trends within the Central Zone.

Key Findings & Activities

- Drilling has intersected multiple zinc-rich mineralised lenses in the Central Zone of the San Jose
 Mine
- Southward extension of the lower lenses below La Caseta Trend has been successfully drilltested and increased the strike length to over 400m
- Reinforcement of the conceptual model of the San Jose Mine as a multi-layered deposit, consisting of multiple vertically stacked, sub-horizontal high-grade mineralised lenses of variable thickness, separated by intervals of dolostone. This is consistent with the generally stratabound character of sulphide orebodies in MVT Pb-Zn districts¹
- Further core samples from 30 drillholes have been submitted to ALS for assay testing; results are pending with encouraging occurrences of visible zinc mineralisation from core logging
- Planned diamond drilling campaign of +2,000m now complete
- Follow up drilling campaigns being refined and expected to re-start shortly

Exploration Potential

- Potential for high-grade mineralisation extending below the former producing mine's lowermost working elevation; majority of the mine has not been drill-tested at depth providing excellent scale opportunity
- The zinc-dominant mineralisation is strongly structurally controlled by a system of steeply-dipping north-south and east-west oriented feeder faults. It occurs as pervasive replacement of favourable shallow-dipping carbonate horizons that were both chemically reactive and permeable to the mineral bearing fluids; as well as open-space filling of paleo-karstic cavities, breccias and fractures, and as disseminated sulphides. This is typical of a classical MVT style deposit and consistent with the nearby (~9km) world class Reocin Mine which is the largest known strata-bound carbonate-hosted Zn-Pb deposit in Spain² and one of the world's richest MVT deposits³


 $^{^1}$ Rong Ma (2018) 'Study on geological features and exploration methods of MVT Pb-Zn deposits' IOP Conf. Ser: Earth Environ. Sci. 108 032010

² Velasco, F., Herrero, J.M., Yusta, I., Alonso, J.A., Seebold, I. and Leach, D., (2003) 'Geology and Geochemistry of the Reocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain' Econ. Geol. v.98, pp. 1371-1396.

³ Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzner, J., Walters, S., (2005) 'Sediment-hosted lead-zinc deposits: a global perspective'. Econ. Geol. 100th Anniversary Special Paper 561 607

Figure 2. Diamond Drill Core from NOVDD046 illustrating massive sphalerite in dolostone

Note: Hole depth shown from 21 m to 49 m

La Caseta Trend

Figure 3. N-S Long-Section of underground drilling at La Caseta

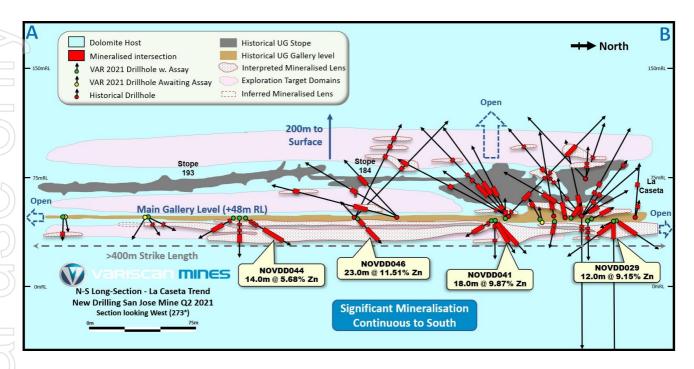
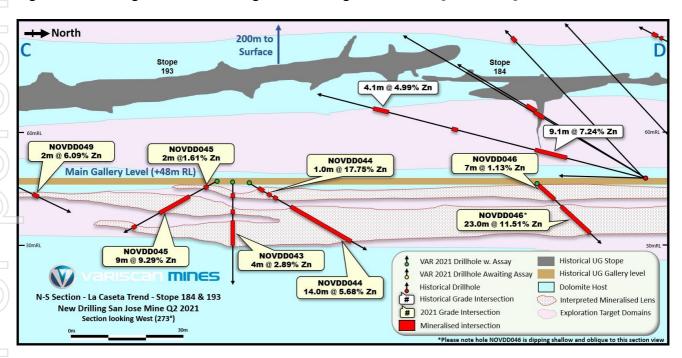
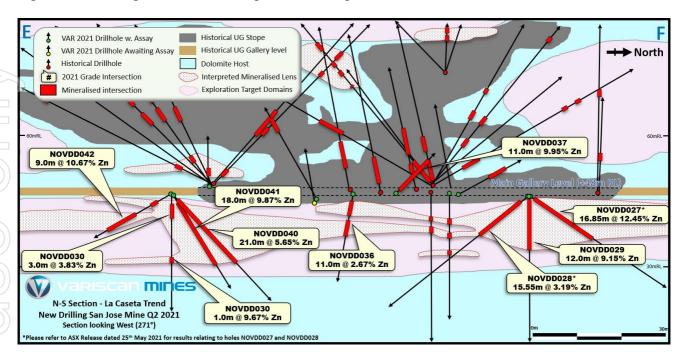


Figure 4. N-S Long-Section of underground drilling at La Caseta [Mid-South]

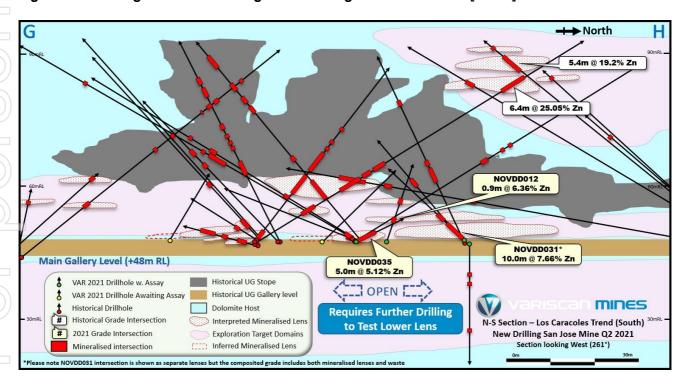


Figure 5. N-S Long-Section of underground drilling at La Caseta [North]

Los Caracoles Trend

Figure 6. N-S Long-Section of underground drilling at Los Caracoles [South]

Looking Ahead

The Company's immediate focus is progressing with the following key activities:

- Receiving and interpreting assay results from drilling at the South West Zone of the San Jose Mine
- Mapping and sampling of surface drill targets over the Buenahora license area
- Surface drilling permitting application pending
- Surface and/or follow-up underground drilling in Q3 2021
- Mapping and sampling of drill targets over the Guajaraz Project in Castilla La Mancha

ENDS

This announcement has been authorised for issue by Mr Stewart Dickson, Managing Director & CEO, Variscan Mines Limited.

For further information:

Variscan Mines Limited

Stewart Dickson

T: +44 (0) 7799 694195

E: <u>stewart.dickson@variscan.com.au</u>

Project Summary

The Novales-Udias Project is located in the Basque-Cantabrian Basin, some 30km southwest from the regional capital, Santander. The project is centred around the former producing San Jose underground mine with a large surrounding area of exploration opportunities which include a number of satellite underground and surface workings and areas of zinc anomalism identified from recent and historic geochemical surveys. Variscan has delineated a significant 9km mineralised trend and a sub-parallel 3km trend from contemporary and historical data across both the Buenahora exploration and Novales mining permits.

The San Jose Mine is nearby (\sim 9km) to the world class Reocin Mine which is the largest known stratabound carbonate-hosted Zn-Pb deposit in Spain⁴ and one of the world's richest MVT deposits⁵. Further it is within trucking distance (\sim 80km) from the San Juan de Nieva zinc smelter operated by Asturiana de Zinc (100% owned by Glencore).

Significantly, the Novales-Udias Project includes a number of granted mining tenements⁶.

⁴ Velasco, F., Herrero, J.M., Yusta, I., Alonso, J.A., Seebold, I. and Leach, D., (2003) 'Geology and Geochemistry of the Reocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain' Econ. Geol. v.98, pp. 1371-1396.

⁵ Leach, D.L., Sangster, D.F., Kelley, K.D., Large, R.R., Garven, G., Allen, C.R., Gutzner, J., Walters, S., (2005) 'Sediment-hosted lead-zinc deposits: a global perspective'. Econ. Geol. 100th Anniversary Special Paper 561 607
⁶ Refer to ASX announcement of 29 July 2019

Novales-Udias Project Highlights

- Near term zinc production opportunity (subject to positive exploratory work)
- Large tenement holding of 68.3 km² (including a number of granted mining tenements)
- Regional exploration potential for another discovery analogous to Reocin (total past production and remaining resource 62Mt @ 8.7% Zn and 1.0% Pb⁷⁸)
- Novales Mine is within trucking distance (~ 80km) from the zinc smelter in Asturias
- Classic MVT carbonate hosted Zn-Pb deposits
- Historic production of high-grade zinc; average grade reported as ~7% Zn9
- Simple mineralogy of sphalerite galena calamine
- Mineralisation is strata-bound, epigenetic, lenticular and sub-horizontal
- Reported historic production of super high grade 'bolsas' (mineralised pods and lenses) commonly 10-20% Zn and in some instances +30% Zn¹⁰
- Assay results of recent targeted grab samples taken from within the underground Novales
 Mine recorded 31.83% Zn and 62.3% Pb¹¹
- Access and infrastructure all in place
- Local community and government support due to historic mining activity

Notes

Variscan Mines Limited (ASX:VAR) is a growth oriented, natural resources company focused on the acquisition, exploration and development of high-quality strategic mineral projects. The Company has compiled a portfolio of high-impact base-metal interests in Spain, Chile and Australia.

The Company's name is derived from the Variscan orogeny, which was a geologic mountain building event caused by Late Paleozoic continental collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of Pangea.

The information in this document that relates to previous exploration results, recently acquired, was prepared pre-2012 JORC code. It is the opinion of Variscan that the exploration data is reliable. Although some of the data is incomplete, nothing has come to the attention of Variscan that causes it to question the accuracy or reliability of the historic exploration.

⁷ Velasco, F., Herrero, J.M., Yusta, I., Alonso, J.A., Seebold, I. and Leach, D., 2003 - Geology and Geochemistry of the Reocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain: in Econ. Geol. v.98, pp. 1371-1396.

⁸ Cautionary Statement: references in this announcement to the publicly quoted resource tonnes and grade of the Project are historical and foreign in nature and not reported in accordance with the JORC Code 2012, or the categories of mineralisation as defined in the JORC Code 2012. A competent person has not completed sufficient work to classify the resource estimate as mineral resources or ore reserves in accordance with the JORC Code 2012. It is uncertain that following evaluation and/or further exploration work that the foreign/historic resource estimates of mineralisation will be able to be reported as mineral resources or ore reserves in accordance with the JORC Code 2012.

⁹ These figures have been taken from historical production data from the School of Mines in Torrelavega historical archives.

¹⁰ Reports of the super high-grade mineralisation are supported with historical production data from the School of Mines in Torrelavega historical archives. (Refer ASX release 29 July 2019)

¹¹ Refer to ASX Announcement of 19 December 2020

Competent Person Statement

The information in this document that relates to technical information about the Novales-Udias project is based on, and fairly represents information and supporting documentation compiled and reviewed by Dr. Mike Mlynarczyk, Principal of the Redstone Exploration Services, a geological consultancy acting as an external consultant for Variscan Mines. Dr. Mlynarczyk is a Professional Geologist (PGeo) of the Institute of Geologists of Ireland, and European Geologist (EurGeol) of the European Federation of Geologists, as well as Fellow of the Society of Economic Geologists (SEG). With over 10 years of full-time exploration experience in MVT-style zinc-lead systems in several of the world's leading MVT provinces, Dr. Mlynarczyk has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" ('JORC Code'). Dr. Mlynarczyk consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Forward Looking Statements

Forward-looking statements are only predictions and are not guaranteed. They are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of the Company. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. The occurrence of events in the future are subject to risks, uncertainties and other factors that may cause the Company's actual results, performance or achievements to differ from those referred to in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, the Company, its directors, officers, employees and agents do not give any assurance or guarantee that the occurrence of the events referred to in this announcement will occur as contemplated.

JORC Table 1, Sections 1 and 2

Criteria	JORC Code explanation	Commentary			
 Nature and quality of sampling cut channels, random chips, or specific specialised industry star measurement tools appropriate the minerals under investigation such as down hole gamma sond or handheld XRF instruments, et These examples should not be to as limiting the broad meaning a sampling. Include reference to measures to ensure sample representativity and the appropriate calibration any measurement tools or system used. Aspects of the determination of mineralisation that are Material the Public Report. In cases where 'industry standar work has been done this would relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which was pulverised to produce a 30 charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation to (eg submarine nodules) may we 		 Drilling being reported has been sampled with industry best practice methods (diamond drilled core cut along its length to produce half core) and samples were sent to the accredited ALS Seville laboratory for analysis. The samples are considered representative and include waste intervals on the periphery of mineralised intersections. It is assumed that the equipment used was calibrated correctly as per the internal SOP's at ALS. The new drillholes reported are located in the Central Zone of the San Jose Mine, they consist of underground diamond drillholes and were sampled as half core from 30cm to 1 m sample length with at least a single 1 m sample either side to cover the periphery of the mineralised intersection. The analytical method used by ALS was Zn-OG62h for Zinc and Pb-OG62h for Lead, as well as Zn-AA07 for non-sulphide ('oxide') zinc. These are considered appropriate for the deposit type. Details of any historical drilling referenced in this document can be found in prior ASX press releases by Variscan Mines from the following dates: 3rd Feb 2020, 3rd March 2020, 16th March 2020 and 1st April 2020 on the website 			
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 The new drillholes detailed in this press release are underground diamond drillholes (core) completed using a Hagby Onram 100 rig at a core diameter 40.7mm (BQTK). These new holes have not employed oriented core methods. Details of any historical drilling referenced in this document can be found in prior ASX press releases by Variscan Mines from the following dates: 3rd Feb 2020, 3rd March 2020, 16th March 2020 and 1st April 2020 on the website www.variscanmines.com.au 			
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery for these drillholes have been typically high >90% as observed by drillers and geologists, this data has been formally recorded for all drillholes at this time, this forms part of the detailed logging. The lowest recovery recorded for an entire drillhole to date is 74.7% mean recovery; however, this is anomalous compared to the other holes with logged recovery thus far. No other methods have been used to maximise sample recovery; however, with recovery >90% reported for almost all holes detailed in this release the methods currently employed appear sufficient. It is not possible to assess the relationship between sample recovery and grade. Details of any historical drilling referenced in this document can be found in prior ASX press releases by Variscan Mines from the following dates: 3rd Feb 2020, 3rd March 2020, 16th March 2020 and 1st April 2020 on the website 			

Criteria	JORC Code explanation	Commentary				
		www.variscanmines.com.au				
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Detailed geological and geotechnical logging has been carried out for all drillholes. Currently there is sufficient geotechnical and geological logging data to support a Mineral Resource estimate. However, mining studies and metallurgical testwork are still required. Total percentage of holes that have been logged for lithology, veins, alteration, mineralisation etcis 100% and the total percentage of new drillholes that has detailed recovery and Geotech logging is 100% at this stage (based on all logs available). All drillholes are photographed before and after cutting core. Details of any historical drilling referenced in this document can be found in prior ASX press releases by Variscan Mines from the following dates: 3rd Feb 2020, 3rd March 2020, 16th March 2020 and 1st April 2020 on the website www.variscanmines.com.au 				
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 New drillholes have been sampled using reasonable industry procedures for logging (of mineralisation), sampling and QAQC for this project. Samples were selected by geologists for these new drillholes based on logging of mineralised intervals, core was cut using a rotary diamond saw along the long axis in halves. Samples were preferred at 1 m lengths, although they were permitted flexibility from 30cm to 1.2m sample lengths typically where geological boundaries exist. In the Variscan SOP for sampling drillholes it was stated that a minimum of three samples were taken for any mineralised intersection, the first sample will encompass the mineralised zone and the other two samples will be selected either side to ensure waste intervals were sampled to define the boundaries of mineralisation. Additionally, when a separate geological zone or rubble or broken core begins a new sample will be taken and when solid core resumes the next samples will be taken and when solid core resumes the next samples will be selected. In zones of poor recovery <50% the default sample interval will be the drillers depth markers. The nature and quality of sampling techniques are considered appropriate for this deposit and drilling type. All half core samples are sent directly to ALS Seville laboratory for preparation and subsequent analysis according to industry standards crushing, pulverizing and splitting prior to sample analysis. Sample sizes taken for the drilling reported are considered suitable for the deposit type and style of mineralisation at this stage of exploration. 				
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable 	 For the new drilling reported the sampling is considered partial as half core remains. The laboratory is accredited (ALS Seville) and the techniques for Zn/Pb (Zn-OG62h and Pb-OG62h) are considered suitable for the elements in question. No handheld or downhole geophysics data were collected during this campaign. QAQC Procedures adopted for this batch of drilling results include twenty total QAQC samples inserted into the sample stream (total 307 drillhole samples, not including QAQC). These included three high-grade CRM (OREAS 134B) inserted into the mineralised zone, three medium grade CRM (OREAS 133A) and four low grade CRM (OREAS 130) inserted in between waste rock or barren samples, six pulp blanks (lab blank). Also, internal duplicates were requested to ALS for one mineralised zone sample and one from either weakly mineralised or barren rock and these sample ID's were indicated to the laboratory. In total, 				

Criteria	JORC Code explanation	Commentary				
	levels of accuracy (ie lack of bias) and precision have been established.	of the 307 new samples reported within this press release the QAQC samples comprise 6.5% of the sample population. This frequency and variety of QAQC samples inserted into the sample stream is considered reasonable; however, industry best practice typically requires 20% of the sample population to be QAQC samples in the sample stream. All of the QAQC sample results have not yet been interpreted, however, the samples reviewed show good repeatability thus far. Additional interpretation will be carried out once more data is available from the laboratory.				
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Analytical processes were supervised by senior ALS staff experienced in mineral assaying. The new diamond drillholes are located in the main mineralised corridors of the San Jose underground mine, some of which are nearby existing historical drillholes, however, they cannot be considered twinned holes at this stage. Twinned holes have been planned during the ongoing drilling campaign, however, these have yet to be drilled. Primary data for the Q4 2020 to Q1 2021 drilling is currently stored in excel and all assay certifications and final assay results provided by ALS Seville have been reviewed. Assay data for Q4 2020 to Q1 2021 drillholes are reported in two ways within this press release, the first are raw assay values unchanged or altered and the second are calculated significant intercepts or aggregated consecutive sample intervals using sample length weighted mean grades for Zn and Pb. 				
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Almost all drillhole collars thus far in this campaign (51 out of a total of 68 reported) have been surveyed by Nortop Inginieros S.L.U. using a Robotic Total Station, based on a known reference point outside the mine mouth and traversing into the mine via the 1.5km main drive and marking line of sight points bolted into the mine walls at regular intervals and reported in the CRS ETRS89 30N. These co-ordinates are considered accurate. The remaining drillholes (17 out of a total of 68) have been surveyed using the Nortop Inginieros S.L.U Total Station determined points and using 'all-in-one' laser disto device (incorporating digital compass, clinometer and distance meter) placed on a 4kg tripod to avoid movements and a topographic rod (with bubble level) to mark the position of the Nortop points. Checks have been made with a Brunton compass to verify that there are no measurements errors. Several checks were made with Nortop points (Bases) obtaining the same results. This was done to supplement the work undertaken by Nortop Ingenieros S.L.U who were unable to survey all collars in the timeframe. However, these are still considered relatively accurate. Surface topography was provided by CNIG (IGN) as topographic contours at 25k scale, the contours were used to generate a digital terrain model in 3D after transformation to the local mine grid to conform to the majority of drillhole data in Leapfrog Geo and Datamine StudioRM. It is considered satisfactory for these purposes. 				
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Recent drillholes (Q4 2020 to Q1 2021) have been drilled in a fan pattern from drilling pads underground. These holes have been drilled in almost all orientations (see table in Appendix 1) and their spacing varies significantly. This drillhole campaign is yet to be completed; therefore, at this stage there is insufficient distribution of drillholes to support geological and grade continuity for the main San Jose mine area. Assay data for the new drillholes are reported in two ways within this press release, the first are raw assay values 				

Criteria	JORC Code explanation	Commentary
	Whether sample compositing has been applied.	unchanged or altered and the second are calculated significant intercepts or aggregated consecutive sample intervals using sample length weighted mean grades for Zn and Pb.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralisation at the project occurs as stratabound, subhorizontal and lenticular, following sub-vertical trends, and with lateral and vertical extensions with a significant control by the development of karsts. Mineralisation in this setting presents as 'bags' (pods) with sub-horizontal lenticular form. Due to the irregular and or variable nature of the mineralisation, an estimate of potential bias through orientation of sampling has not been made. While the location of mineralisation centres on the Novales trend follows a broad NNE strike, the orientation of distinct orebodies on this trend is understood to be irregular and highly variable both in terms of strike and dip. UG drilling is often radial in nature, and no comment can be made on the orientation of drilling in respect of mineralisation orientation. Surface drilling is often vertical and/or dipping steeply. New drillholes have been oriented at a variety of orientations both drilling above and below (positive and negative dips) from the main gallery level at present, similar to those drilled historically to intersect mineralised lenses and corridors above and below the main gallery level. These orientations are considered appropriate for the geometry of this mostly lenticular MVT mineralisation at San Jose. The results of all of these holes are not available currently (assays pending); thus, it is not possible to comment on the relationship between drilling orientation and the orientation of key mineralised structures or sampling bias. In some cases where new holes have been oriented vertically both above and below the main gallery, the sample interval lengths within the sub-horizontal lenticular morphology of the mineralisation is considered to be representative of true thickness
Sample security	The measures taken to ensure sample security.	 and is not considered to include a sampling bias. Samples are securely stored at the locked on-site core shed and were handed directly to a courier for transport to ALS Seville. Samples were logged and collected on site under supervision of the responsible Variscan geologist.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No detailed 3 rd party audits have taken place regarding the sampling techniques for new drillholes.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The exploration permit "Buenahora" is held by Variscan Mines. The author is not aware, at the time of writing this, of any environmental issues that could affect ongoing works within these licences. The exploitation permit for the Novales-Udias historic mine area is owned by Variscan Mines. The author is not aware, at the time of writing this, of any issues with tenure or permission to operate in this region.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	The historical data referenced in this report refer to exploration undertaken by historic mining companies operating the Project from the 1950's to the mid 1980's. The

Criteria	JORC Code explanation	Commentary
3		previous workers include Hispanibal and Asturiana de Zinc (previously a subsidiary of Xstrata / Glencore). • The historic data referenced in this report and undertaken by the historic workers is held at the School of Mines and Energy Engineering at Torrelavega, a faculty of the University of Cantabria.
Geology	Deposit type, geological setting and style of mineralisation.	 The mineralisation at the project is considered a Mississippi Valley Type Lead-Zinc type deposit with associated structural and stratigraphic controlled carbonate dissolution and replacement Lead-Zinc type mineralisation. Mineralisation at the project occurs as stratiform, subhorizontal and lenticular, following sub-vertical trends, and with lateral and vertical extensions, with a significant control by the development of karsts. Mineralisation in this setting presents as 'bags' (pods) with sub-horizontal lenticular form.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 In total, of the 75 underground drillholes completed to date, 68 of which are plotted in this press release (see Appendix 1). This press release presents new assay data for a further 20 drillholes from this campaign, see table in Appendix 2 for raw assay data from the laboratory. All 68 collar co-ordinates, hole depths and orientations for the holes reported in this announcement have been provided in the table in Appendix 1. In total including the 9th March and 25th May 2021 drilling results ASX releases, there are 46 drillholes with assay results presented thus far by Variscan from this campaign (11 from 9th March, 15 from the 25th May 2021 and a further 20 from this press release). No information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated • Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Aggregated intersections stated in the main body of this announcement (first bullet points) has only been undertaken for consecutive intervals with reported assay data, these aggregated intersections have been calculated as a weighted average based on the sample lengths. All raw assay data on which these were based is shown in Appendix 2. No metal equivalent grades have been stated. New drillhole assays have been reported both as raw assays from ALS Sevilla and also as aggregated consecutive intersections using length weighted averaging method. Where drilling has encountered a void or cavity, an artificial interval was inserted, prior to compositing, with a zero (0) value for Zn and Pb. Details of drillhole assay results from the mine portal and in the central area of San Jose can be found in a prior ASX releases by Variscan Mines on 9th March and 25th May 2021 respectively, available on the website www.variscanmines.com.au Details of any historical drilling referenced in this document can be found in prior ASX press releases by Variscan Mines from the following dates: 3rd Feb 2020, 3rd March 2020, 16th March 2020 and 1st April 2020 on the website www.variscanmines.com.au
Relationship between	These relationships are particularly important in the reporting of	Historical drillholes have typically been inclined upwards from the main drive (positive dip) in a fan pattern from single and

Criteria	JORC Code explanation	Commentary				
mineralisation widths and intercept lengths	 Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	multiple bays to intersect sub horizontal mineralised lenses present at the San Jose mine. These angles vary significantly and it is expected that mineralisation is encountered at oblique angles and therefore cannot represent true thickness unless drilled vertically upwards/downwards into a lens directly above or below the main drive level. Recent drillholes have been drilled both vertically upwards (+90° dip) and vertically downwards (-90° dip) and inclined at varied dips and azimuths' in between to target mineralisation above and below the main drive level. Where vertical holes have been drilled by Variscan, it is considered these most closely represent true thickness of the subhorizontal lenticular mineralisation.				
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 The information in this news release refers to a significant discovery below the main gallery level, maps and figures have been included to illustrate the location of the results reported. Figure 1 provides an overview map of the San Jose mine area at a scale of 1:3,000 with stopes, drive and new drillholes shown with a background of simplified 25k IGME geology. The inset map here indicates the relative position of the frame within the Variscan Mines Ltd licence polygons. Figure 2 shows a larger scale long section (A-B) version of the La Caseta Trend indicating drillholes awaiting assay data and the target zones for mineralisation above and below the main gallery level. Figure 3 is a photograph of several core boxes from NOVDD046 with grades of each sample interval annotated. Figure 4 provides a cross-section (C-D) from the centre of the La Caseta Trend (Stope 184 and 193) with interpreted mineralised lenses below the main gallery level. Figure 5 shows a cross-section from the North of the La Caseta Trend (E-F) with interpreted mineralised lenses above and below the main gallery level with length weighted mean grades of significant intersections. Figure 6 shows a cross section (G-H) at the southern end of Los Caracoles area with interpreted mineralised lenses with new drillholes and length weighted mean grades. 				
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Details of any historical drilling referenced in this document can be found in prior ASX press releases by Variscan Mines from the following dates: 3 rd Feb 2020, 3 rd March 2020, 16 th March 2020 and 1 st April 2020 on the website www.variscanmines.com.au New drillhole raw assay results including both low and high-grade intersections have been included in the table within Appendix 1				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Details of any historical drilling referenced in this document can be found in prior ASX press releases by Variscan Mines from the following dates: 3rd Feb 2020, 3rd March 2020, 16th March 2020 and 1st April 2020 on the website www.variscanmines.com.au No other exploration data referenced in this report is considered sufficiently meaningful or material to warrant further reference. 				
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or	 Variscan have exploration plans to advance the Novales- Udias Project. The exploration plan is likely to include: Drilling campaign from surface to test step out extensions 				

Criteria	JORC Code explanation	Commentary
	large-scale step-out drilling). • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Drilling campaign underground to test: Extensions of mineralised lenses Follow up underground drilling to test: vertical extensions new lower lying lenses infill mineralised lenses Diagrams illustrating the geological interpretations and possible extensions to mineralisation have been provided

Appendix 1: Table of Underground Drillhole Collar Co-ordinates and Orientations of All Drillholes Thus Far Drilled and Surveyed by Variscan at the Novales-Udias Project

BHID	х	Υ	Z	Depth (m)	Azimuth (°)	Dip (°)
NOVDD001	402711.46	4802466.02	47.11	13	268	78
NOVDD002	403488.07	4803678.55	38.77	21.5	270	20
NOVDD003	403475.39	4803661.79	38.67	12.65	72	15
NOVDD004	403475.30	4803661.72	39.39	23.7	75	45
NOVDD005	403475.38	4803662.03	38.92	9.6	65	23
NOVDD006	403471.36	4803658.97	38.96	5.35	125	31
NOVDD007	403485.89	4803673.41	39.35	30.2	200	83
NOVDD008	403509.66	4803694.58	39.11	13.05	210	60
NOVDD009	403532.89	4803710.05	39.02	11.1	220	80
NOVDD010	403470.75	4803659.07	39.48	10.6	138	56
NOVDD011	403470.86	4803659.32	39.52	7.95	-	90
NOVDD012	402897.93	4802482.96	47.74	32.8	60	45
NOVDD013	402819.28	4802541.31	46.50	7.2	256	40
NOVDD014	402819.58	4802542.03	46.71	9.9	270	60
NOVDD015	402820.06	4802540.65	44.80	32.3	262	-30
NOVDD016	402820.43	4802540.78	44.39	17.2	257	-70
NOVDD017	402819.16	4802541.60	44.91	30.9	191	-26
NOVDD018	402819.18	4802541.50	46.07	11.5	182	30
NOVDD019	402821.97	4802548.62	46.03	21.9	295	30
NOVDD020	402821.95	4802548.77	44.43	20.2	310	-30
NOVDD021	402992.17	4802484.30	49.17	39.4	-	90
NOVDD022	402992.86	4802484.39	49.19	30	105	70
NOVDD024	402737.29	4802520.45	44.68	26.4	_	-90
NOVDD025	402739.43	4802519.72	46.30	27.4	118	33
NOVDD026	402737.91	4802522.83	46.28	19	33	25
NOVDD027	402723.59	4802540.70	45.05	37.1	20	-32
NOVDD028	402718.40	4802542.30	45.09	42	185	-35
NOVDD028B	402723.00	4802538.17	44.94	4	190	-35
NOVDD029	402723.20	4802539.25	44.97	94.5	145	-90
NOVDD030	402707.96	4802457.80	44.91	25	-	-90
NOVDD031	402881.82	4802499.28	46.97	25	192	40
NOVDD032	402883.31	4802499.41	45.14	25.3	305	-90
NOVDD033	402900.10	4802433.67	47.89	22.2	297	45
NOVDD034	402890.50	4802467.68	47.32	24	330	42
NOVDD035	402894.56	4802474.31	47.08	13.3	340	25
NOVDD036	402722.58	4802498.62	44.72	25	260	-45
NOVDD037	402750.11	4802508.20	46.95	14	36	40
NOVDD038	402734.39	4802489.59	46.17	40	110	31
NOVDD039	402734.00	4802489.79	44.49	14.5	110	60
NOVDD040	402705.60	4802459.48	44.73	30	0	-47
NOVDD041	402704.49	4802458.26	44.72	28	312	-45

BHID	х	Y	Z	Depth (m)	Azimuth (°)	Dip (°)
NOVDD042	402707.16	4802455.27	45.02	20	187	-30
NOVDD043	402710.08	4802281.38	46.95	26.4	-	-90
NOVDD044	402709.29	4802285.00	47.21	35.6	0	-30
NOVDD045	402710.11	4802276.95	47.03	28.1	190	-29
NOVDD046	402668.19	4802364.34	46.07	47.6	72	-1 <i>7</i>
NOVDD047	402709.83	4802159.29	48.21	33	270	-28
NOVDD048	402709.82	4802159.18	48.27	29	271	-15
NOVDD049	402716.34	4802218.78	47.43	30	310	-16
NOVDD050	402716.29	4802217.91	47.71	29	248	-30
NOVDD051	402716.33	4802218.50	47.67	30	284	-22
NOVDD052	402310.00	48021 <i>57</i> .86	50.83	70	180	31
NOVDD053	402332.25	4802141.78	51.69	30	-	90
NOVDD054	402332.30	4802141.70	49.52	25	300	-87
NOVDD055	402330.09	4802133.91	51.38	41.7	265	33
NOVDD056	402329.88	4802126.43	51.40	36	255	27
NOVDD057	402329.77	4802127.12	52.27	39.8	272	50
NOVDD058	402318.93	4802162.71	51.60	35.2	1 <i>75</i>	77
NOVDD059	402316.03	4802164.00	51.01	44	0	45
NOVDD060	402314.87	4802160.29	49.28	35	180	-35
NOVDD061	402415.22	4802194.80	50.89	37.4	-	90
NOVDD062	402443.58	4802354.01	51.09	42	-	90
NOVDD063	402443.94	4802357.61	50.99	49	88	60
NOVDD064	402444.12	4802358.07	50.72	45.6	50	48
NOVDD065	402443.59	4802344.40	50.63	18.5	260	45
NOVDD066	402446.47	4802346.06	50.36	45.7	50	40
NOVDD067	402472.68	4802319.48	50.51	30.1	-	90
NOVDD068	402473.93	4802320.62	49.66	73.6	45	27

Appendix 2: Table of Raw Drillhole Analytical Results from ALS Laboratory Seville

BHID	Sample No	From (m)	To (m)	Length (m)	Zn %	Pb %	Zn % (ox)	Zn+Pb %
NOVDD027	VAR000182	16.85	1 <i>7</i> .85	1	0.213	0.071	0.16	0.284
NOVDD027	VAR000183	1 <i>7</i> .85	18.85	1	0.064	0.019	0.05	0.083
NOVDD027	VAR000184	18.85	19.85	1	0.061	0.025	0.03	0.086
NOVDD027	VAR000185	19.85	20.85	1	0.057	0.013	0.03	0.07
NOVDD027	VAR000186	20.85	21.85	1	0.247	0.024	0.13	0.271
NOVDD027	VAR000187	21.85	22.85	1	0.028	0.004	0.01	0.032
NOVDD027	VAR000188	22.85	23.85	1	0.012	0.002	0.01	0.014
NOVDD027	VAR000189	23.85	24.85	1	0.088	0.008	0.04	0.096
NOVDD027	VAR000190	24.85	25.85	1	0.113	0.016	0.05	0.129
NOVDD027	VAR000191	25.85	26.85	1	0.02	0.003	0.01	0.023
NOVDD028	VAR000192	16.55	1 <i>7</i> .55	1	0.232	0.034	0.17	0.266
NOVDD028	VAR000193	1 <i>7</i> .55	18.55	1	0.087	0.012	0.06	0.099
NOVDD028	VAR000194	18.55	19.55	1	0.129	0.028	0.1	0.1 <i>57</i>
NOVDD028	VAR000195	19.55	20.55	1	0.037	0.005	0.02	0.042
NOVDD028	VAR000196	20.55	21.55	1	0.014	0.002	0.01	0.016
NOVDD028	VAR000197	21.55	22.55	1	0.013	0.003	0.01	0.016
NOVDD028	VAR000198	22.55	23.55	1	0.015	0.003	0.01	0.018
NOVDD028	VAR000199	23.55	24.55	1	0.01	0.002	0.01	0.012
NOVDD028	VAR000200	24.55	25.55	1	0.043	0.006	0.02	0.049
NOVDD028	VAR000201	25.55	26.55	1	0.13	0.025	0.06	0.155
NOVDD029	VAR000160	0	1.1	1.1	24.6	8.23	0.44	32.83

BHID	Sample No	From (m)	To (m)	Length (m)	Zn %	Pb %	Zn % (ox)	Zn+Pb %
NOVDD029	VAR000161	1.1	2.2	1.1	20.5	2.09	0.31	22.59
NOVDD029	VAR000162	2.2	3.1	0.9	1.955	0.635	0.1	2.59
NOVDD029	VAR000163	3.1	4.1	1	0.455	0.012	0.07	0.467
NOVDD029	VAR000164	4.1	5	0.9	9.37	4.14	0.2	13.51
NOVDD029	VAR000165	5	6	1	6.11	0.101	0.3	6.211
NOVDD029	VAR000166	6	7	1	8.96	0.403	1.49	9.363
NOVDD029	VAR000167	7	8	1	19.95	23	0.66	42.95
NOVDD029	VAR000168	8	9	1	4.58	8.32	0.45	12.9
NOVDD029	VAR000169	9	10	1	0.163	0.27	0.03	0.433
NOVDD029	VAR000170	10	11	1	0.026	0.01	0.02	0.036
NOVDD029	VAR000171	11	12	1	9.78	0.564	0.25	10.344
NOVDD029	VAR000173	12	13	1	0.028	0.004	0.02	0.032
NOVDD029	VAR000174	13	14	1	0.011	0.002	0.01	
NOVDD029	VAR000175	14	15	1	0.006	0.002	0.005	
NOVDD029	VAR000176	16.9	17.9	1	0.065	0.002	0.01	
NOVDD029	VAR000177	36.5	37.5	1	0.088	0.038	0.03	0.126
NOVDD029	VAR000178	37.5	38.5	1	0.039	0.056	0.01	0.095
NOVDD029	VAR000179	38.5	39.5	1	0.076	0.115	0.02	0.191
NOVDD029	VAR000180	39.5	40.5	1	0.126	0.058	0.03	0.184
NOVDD029	VAR000181	40.5	41.5	1	0.039	0.005	0.01	0.044
NOVDD030	VAR000202	0.5	1.5	1	0.007	0.002	0.01	
NOVDD030	VAR000203	1.5	2.5	1	0.356	0.002	0.05	
NOVDD030	VAR000204	2.5	3.5	1	3.29	0.1	0.19	3.39
NOVDD030	VAR000205	3.5	4.5	1	7.85	0.006	0.24	7.856
NOVDD030	VAR000206	4.5	5.5	1	0.015	0.002	0.01	
NOVDD030	VAR000207	5.5	6.5	1	0.179	0.004	0.03	0.183
NOVDD030	VAR000208	6.5	7.5	1	0.024	0.003	0.02	0.027
NOVDD030	VAR000209	7.5	8.5	1	0.103	0.005	0.04	0.108
NOVDD030	VAR000211	8.5	9.5	1	0.058	0.012	0.04	0.07
NOVDD030	VAR000212	9.5	10.5	1	0.141	0.024	0.07	0.165
NOVDD030	VAR000213	10.5	11.5	1	0.027	0.004	0.02	0.031
NOVDD030	VAR000214	11.5	12.5	1	0.012	0.002	0.01	0.001
NOVDD030	VAR000215	12.5	13.5	1	9.67	0.562	0.24	10.232
NOVDD030	VAR000216	13.5	14.5	1	0.13	0.003	0.04	0.133
NOVDD030	VAR000217	14.5	15.5	1	0.008	0.002	0.005	0.01
NOVDD031	VAR000218	0	1	1	0.024	0.002	0.01	0.026
NOVDD031	VAR000219	1	2	1	12.4	0.506	0.28	12.906
NOVDD031	VAR000217	2	3	1	11.15	2.49	0.3	13.64
NOVDD031	VAR000220	3	4	1	15.55	6.5	0.32	22.05
NOVDD031	VAR000221	4	5	1	10.5	3.82	0.28	14.32
NOVDD031	VAR000225	5	6	1	13.4	5.34	0.28	18.74
NOVDD031	VAR000225	6	7	1	3.14	0.051	0.32	3.191
NOVDD031	VAR000227	7	8	1	0.042	0.003	0.03	0.045
NOVDD031	VAR000227	8	9	1	1.805	0.003	0.03	1.845
NOVDD031	VAR000229	9	10	1	8.02	0.04	3.29	8.144
NOVDD031	VAR000229 VAR000230	4.8	5.8	1	0.581	0.124	0.14	0.6
NOVDD032	VAR000230 VAR000231	5.8		1	0.381	0.019	0.14	0.096
			6.8	1	-			0.070
NOVDD032	VAR000232	6.8	7.8		0.432	0.002	0.09	
NOVDD032	VAR000233	17.5	18.5	1	0.457	0.002	0.08	10041
NOVDD035	VAR000234	0	1	1	12.85	0.091	1.1 <i>7</i>	12.941

BHID	Sample No	From (m)	To (m)	Length (m)	Zn %	Pb %	Zn % (ox)	Zn+Pb %
NOVDD035	VAR000235	1	2	1	1.68	0.009	0.24	1.689
NOVDD035	VAR000236	2	3	1	3.09	0.132	0.18	3.222
NOVDD035	VAR000237	3	4	1	5.03	0.132	0.22	5.162
NOVDD035	VAR000238	4	5	1	2.94	0.002	0.18	
NOVDD036	VAR000242	0	1	1	2.92	0.01	0.23	2.93
NOVDD036	VAR000243	1	2	1	2.97	0.006	0.19	2.976
NOVDD036	VAR000244	2	3	1	0.287	0.007	0.08	0.294
NOVDD036	VAR000245	3	4	1	5.9	0.03	0.29	5.93
NOVDD036	VAR000246	4	5	1	0.162	0.004	0.07	0.166
NOVDD036	VAR000247	5	6	1	0.137	0.021	0.09	0.158
NOVDD036	VAR000248	6	7	1	13.4	0.17	0.94	13.57
NOVDD036	VAR000250	7	8	1	1.87	0.033	0.34	1.903
NOVDD036	VAR000251	8	9	1	0.71	0.166	0.48	0.876
NOVDD036	VAR000252	9	10	1	0.395	0.081	0.22	0.476
NOVDD036	VAR000253	10	11	1	0.625	0.016	0.48	0.641
NOVDD036	VAR000254	11	12	1	0.007	0.002	0.01	
NOVDD036	VAR000255	12	13	1	0.01	0.002	0.02	
NOVDD036	VAR000256	13	14	1	0.007	0.002	0.01	
NOVDD036	VAR000257	14	15	1	0.003	0.002	0.01	
NOVDD036	VAR000258	15	16	1	0.01	0.002	0.01	
NOVDD036	VAR000259	16	17	1	0.002	0.002	0.01	
NOVDD036	VAR000260	17	18	1	0.007	0.003	0.01	0.01
NOVDD036	VAR000261	18	19	1	0.162	0.003	0.05	0.165
NOVDD036	VAR000262	19	20	1	0.022	0.003	0.02	0.025
NOVDD036	VAR000263	20	21	1	0.005	0.002	0.01	
NOVDD037	VAR000264	0	1	1	12.45	20.9	1.01	33.35
NOVDD037	VAR000265	1	2	1	15.3	9.72	0.67	25.02
NOVDD037	VAR000267	2	3	1	27.5	13.45	0.63	40.95
NOVDD037	VAR000269	3	4	1	21.4	9.19	0.89	30.59
NOVDD037	VAR000271	4	5	1	5.1	3.71	0.33	8.81
NOVDD037	VAR000272	5	6	1	3.82	0.895	0.17	4.715
NOVDD037	VAR000273	6	7	1	4.43	1.465	0.17	5.895
NOVDD037	VAR000274	7	8	1	0.058	0.037	0.03	0.095
NOVDD037	VAR000275	8	9	1	0.428	0.204	0.27	0.632
NOVDD037	VAR000276	9	10	1	5.45	0.432	0.43	5.882
NOVDD037	VAR000277	10	11	1	13.5	1.375	2.13	14.875
NOVDD038	VAR000239	29	30	1	4.91	0.006	0.42	4.916
NOVDD038	VAR000240	32	33	1	12.15	0.71	0.95	12.86
NOVDD038	VAR000241	33	34.2	1.2	13.25	0.523	1.87	13.773
NOVDD040	VAR000278	0	1	1	1.865	0.027	0.23	1.892
NOVDD040	VAR000279	1	2	1	0.686	0.01	0.09	0.696
NOVDD040	VAR000277	2	3	1	7.59	0.102	0.61	7.692
NOVDD040	VAR000280	3	4	1	18.1	0.719	1.56	18.819
NOVDD040	VAR000281	4	5	1	15.45	0.709	0.45	16.159
NOVDD040	VAR000282 VAR000284	5	6	1	1.795	0.007	0.43	1.802
NOVDD040	VAR000284 VAR000285	6	7	1	0.026	0.007	0.02	0.029
NOVDD040	VAR000285 VAR000286	7	8	1	8.26	0.003	0.02	8.278
NOVDD040	VAR000287 VAR000288	8 9	9	1	0.861	12.25	0.09	0.868 27.95
NOVDD040				1	1 <i>5.7</i>	1 17.75	. บรธ	1 //.95

BHID	Sample No	From (m)	To (m)	Length (m)	Zn %	Pb %	Zn % (ox)	Zn+Pb %
NOVDD040	VAR000291	11	12	1	0.795	0.012	0.1	0.807
NOVDD040	VAR000292	12	13	1	1.47	0.024	0.13	1.494
NOVDD040	VAR000293	13	14	1	0.088	0.018	0.04	0.106
NOVDD040	VAR000294	14	15	1	6.06	0.103	0.28	6.163
NOVDD040	VAR000295	15	16	1	8.64	0.442	2.33	9.082
NOVDD040	VAR000296	16	17	1	9.84	0.062	0.3	9.902
NOVDD040	VAR000297	17	18	1	0.028	0.005	0.02	0.033
NOVDD040	VAR000298	18	19	1	4.23	0.01	0.18	4.24
NOVDD040	VAR000299	19	20	1	7.48	0.015	0.29	7.495
NOVDD040	VAR000300	20	21	1	9.08	0.01	0.35	9.09
NOVDD040	VAR000301	21	22	1	0.03	0.004	0.03	0.034
NOVDD041	VAR000310	1	2	1	10. <i>7</i>	0.467	0.32	11.167
NOVDD041	VAR000311	2	3	1	2.38	0.11	0.37	2.49
NOVDD041	VAR000312	3	4	1	6.34	0.883	0.69	7.223
NOVDD041	VAR000313	4	5	1	7.55	0.232	0.52	7.782
NOVDD041	VAR000314	5	6	1	5.76	0.027	0.29	5.787
NOVDD041	VAR000315	6	7	1	8.56	0.483	0.4	9.043
NOVDD041	VAR000316	7	8	1	1.395	0.046	0.16	1.441
NOVDD041	VAR000317	8	9	1	3.44	0.027	0.79	3.467
NOVDD041	VAR000318	9	10	1	4.02	0.237	0.3	4.257
NOVDD041	VAR000319	10	11	1	18.8	2.68	0.55	21.48
NOVDD041	VAR000320	11	12	1	0.32	0.037	0.22	0.357
NOVDD041	VAR000321	12	13	1	1.92	0.717	0.22	2.637
NOVDD041	VAR000322	13	14	1	14.7	17.55	0.26	32.25
NOVDD041	VAR000323	14	15	1	25.6	25.6	0.36	51.2
NOVDD041	VAR000325	15	16	1	31.9	6.83	0.53	38.73
NOVDD041	VAR000326	16	17	1	7.75	0.469	0.1	8.219
NOVDD041	VAR000327	17	18	1	17.1	1.735	2.89	18.835
NOVDD041	VAR000328	18	19	1	9.35	0.235	0.41	9.585
NOVDD041	VAR000329	19	20	1	0.063	0.01	0.02	0.073
NOVDD041	VAR000330	20	21	1	0.025	0.008	0.01	0.033
NOVDD041	VAR000331	21	22	1	0.017	0.004	0.01	0.021
NOVDD042	VAR000333	0	1	1	0.011	0.004	0.005	0.015
NOVDD042	VAR000334	1	2	1	0.023	0.005	0.01	0.028
NOVDD042	VAR000335	2	3	1	1.965	0.004	0.04	1.969
NOVDD042	VAR000336	3	4	1	0.248	0.003	0.01	0.251
NOVDD042	VAR000337	4	5	1	0.133	0.007	0.02	0.14
NOVDD042	VAR000338	5	6	1	0.013	0.003	0.01	0.016
NOVDD042	VAR000339	6	7	1	0.661	0.005	0.04	0.666
NOVDD042	VAR000337	7	8	1	24.1	0.292	0.15	24.392
NOVDD042	VAR000340	8	9	1	7.89	0.017	0.13	7.907
NOVDD042	VAR000341	9	10	1	12.45	0.315	0.12	12.765
NOVDD042	VAR000342 VAR000344	10	11	1	0.084	0.012	0.17	0.096
NOVDD042	VAR000344 VAR000345	11	12	1	18.65	7.73	0.69	26.38
NOVDD042	VAR000345 VAR000346	12	13	1		0.46	1.37	
					4.66			5.12
NOVDD042	VAR000347	13	14	1	25.4	6.61	0.22	32.01
NOVDD042	VAR000348	14	15	1	2.09	0.377	0.05	2.467
NOVDD042	VAR000349	15	16	1	0.062	0.015	0.01	0.077
NOVDD042	VAR000350	16	17	1	0.182	0.005	0.01	0.187
NOVDD042	VAR000351	1 <i>7</i>	18	1	0.434	0.011	0.05	0.445

BHID	Sample No	From (m)	To (m)	Length (m)	Zn %	Pb %	Zn % (ox)	Zn+Pb %
NOVDD042	VAR000352	18	19	1	0.042	0.005	0.02	0.047
NOVDD042	VAR000353	19	20	1	0.443	0.003	0.03	0.446
NOVDD043	VAR000354	0	0.5	0.5	0.369	0.011	0.05	0.38
NOVDD043	VAR000355	0.5	1.5	1	0.031	0.004	0.02	0.035
NOVDD043	VAR000356	1.5	2.5	1	0.041	0.003	0.01	0.044
NOVDD043	VAR000357	2.5	3.5	1	0.066	0.003	0.05	0.069
NOVDD043	VAR000358	3.5	4.5	1	2.45	0.012	1	2.462
NOVDD043	VAR000359	4.5	5.5	1	0.026	0.003	0.02	0.029
NOVDD043	VAR000360	5.5	6.5	1	0.124	0.004	0.03	0.128
NOVDD043	VAR000361	6.5	7.5	1	0.046	0.002	0.02	0.048
NOVDD043	VAR000362	7.5	8.5	1	0.607	0.121	0.31	0.728
NOVDD043	VAR000363	8.5	9.4	0.9	0.031	0.003	0.02	0.034
NOVDD043	VAR000364	9.4	10.4	1	0.18	0.002	0.06	0.182
NOVDD043	VAR000365	10.4	11.4	1	0.328	0.016	0.18	0.344
NOVDD043	VAR000366	11.4	12.4	1	1.945	0.008	0.82	1.953
NOVDD043	VAR000367	12.4	13.4	1	2.99	0.009	0.96	2.999
NOVDD043	VAR000368	13.4	14.4	1	2.9	0.002	0.11	2.902
NOVDD043	VAR000369	14.4	15.4	1	3.71	0.005	0.12	3.715
NOVDD043	VAR000370	15.4	16.4	1	0.287	0.007	0.05	0.294
NOVDD044	VAR000371	0	0.7	0.7	0.801	0.004	0.15	0.805
NOVDD044	VAR000372	0.7	1.5	0.8	0.077	0.005	0.04	0.082
NOVDD044	VAR000373	1.5	2.5	1	0.026	0.004	0.02	0.03
NOVDD044	VAR000374	2.5	3.5	1	0.014	0.004	0.02	0.018
NOVDD044	VAR000375	3.5	4.5	1	0.325	0.007	0.15	0.332
NOVDD044	VAR000376	4.5	5.5	1	0.38	0.093	0.19	0.473
NOVDD044	VAR000377	5.5	6.5	1	0	0		
NOVDD044	VAR000378	6.5	7.5	1	17.75	1.78	1.54	19.53
NOVDD044	VAR000379	7.5	8.5	1	0.241	0.064	0.14	0.305
NOVDD044	VAR000380	8.5	9.5	1	1.11	0.205	0.62	1.315
NOVDD044	VAR000381	9.5	10.5	1	0.114	0.01	0.06	0.124
NOVDD044	VAR000382	10.5	11.5	1	0.059	0.009	0.04	0.068
NOVDD044	VAR000383	11.5	12.5	1	0.033	0.005	0.03	0.038
NOVDD044	VAR000384	12.5	13.5	1	0.024	0.004	0.02	0.028
NOVDD044	VAR000385	13.5	14.5	1	0.059	0.007	0.04	0.066
NOVDD044	VAR000386	14.5	15.5	1	0.427	0.008	0.09	0.435
NOVDD044	VAR000387	15.5	16.5	1	0.202	0.029	0.11	0.231
NOVDD044	VAR000388	16.5	17.5	1	3.79	0.057	0.17	3.847
NOVDD044	VAR000389	17.5	18.5	1	19.55	0.058	1.07	19.608
NOVDD044	VAR000390	18.5	19.5	1	6.14	0.059	0.57	6.199
NOVDD044	VAR000370	19.5	20.5	1	0.126	0.037	0.07	0.144
NOVDD044	VAR000371	20.5	21.5	1	25	0.497	1.37	25.497
NOVDD044	VAR000373	21.5	22.5	1	13.45	3.97	3.59	17.42
NOVDD044	VAR000393	22.5	23.5	1	0.111	0.013	0.08	0.124
NOVDD044	VAR000397	23.5	24.5	1	0.111	0.013	0.04	0.124
NOVDD044	VAR000397	24.5	25.5	1	0.923	0.012	0.04	0.222
NOVDD044	VAR000398	25.5	26.5	1	2.31	0.044	0.09	2.319
		26.5	27.5	1		0.009		
NOVDD044	VAR000400			1	0.131		0.02	0.14
NOVDD044	VAR000401	27.5	28.5		0.046	0.004	0.01	0.05
NOVDD044	VAR000402	28.5	29.5	1	6.78	0.009	0.16	6.789
NOVDD044	VAR000403	29.5	30.5	1	0.891	0.002	0.06	0.893

BHID	Sample No	From (m)	To (m)	Length (m)	Zn %	Pb %	Zn % (ox)	Zn+Pb %
NOVDD044	VAR000404	30.5	31.5	1	0.019	0.002	0.01	
NOVDD044	VAR000405	31.5	32.5	1	0.037	0.007	0.03	0.044
NOVDD045	VAR000406	0	1.1	1.1	0.011	0.002	0.01	
NOVDD045	VAR000407	1.1	2.1	1	0.093	0.007	0.04	0.1
NOVDD045	VAR000408	2.1	3.1	1	1.78	0.008	0.69	1.788
NOVDD045	VAR000409	3.1	4.1	1	1.445	0.083	0.35	1.528
NOVDD045	VAR000410	4.1	5.1	1	0.158	0.002	0.07	0.16
NOVDD045	VAR000411	5.1	6.1	1	0.124	0.002	0.03	
NOVDD045	VAR000412	6.1	<i>7</i> .1	1	0.157	0.018	0.07	0.175
NOVDD045	VAR000413	<i>7</i> .1	8.1	1	0.051	0.005	0.04	0.056
NOVDD045	VAR000414	8.1	9.1	1	10.3	0.093	0.27	10.393
NOVDD045	VAR000415	9.1	10.1	1	1 <i>7</i> .1	0.083	0.22	1 <i>7</i> .183
NOVDD045	VAR000417	10.1	11.1	1	23.3	2.27	0.5	25.57
NOVDD045	VAR000418	11.1	12.1	1	19.85	1.065	0.27	20.915
NOVDD045	VAR000419	12.1	13.1	1	8.26	0.709	0.18	8,969
NOVDD045	VAR000420	13.1	14.1	1	0.266	0.012	0.11	0.278
NOVDD045	VAR000421	14.1	15.1	1	3.42	0.014	1.36	3.434
NOVDD045	VAR000422	15.1	16.1	1	0.568	0.007	0.26	0.575
NOVDD045	VAR000422	16.1	17.1	1	0.544	0.005	0.19	0.549
NOVDD045	VAR000424	17.1	18.1	1	0.032	0.003	0.01	0.547
NOVDD045	VAR000424	18.1	19.1	1	0.008	0.002	0.005	0.011
		19.1	20.1	1	0.008	0.003		
NOVDD045	VAR000426 VAR000427	20.1	21.1	1	0.013	0.004	0.005	0.017
NOVDD045					-			0.007
NOVDD045	VAR000428	21.1	22.1	1	0.014	0.012	0.01	0.026
NOVDD045	VAR000429	22.1	23.1	1	0.006	0.002	0.005	0.008
NOVDD045	VAR000430	23.1	24.1	1	0.006	0.002	0.005	
NOVDD045	VAR000431	24.1	25.1	1	0.057	0.002	0.02	
NOVDD045	VAR000432	25.1	26.1	1	0.256	0.002	0.02	2 2 2 2
NOVDD045	VAR000433	26.1	27.1	1	0.025	0.003	0.005	0.028
NOVDD045	VAR000434	27.1	28.1	1	0.007	0.002	0.005	
NOVDD046	VAR000435	0	1	1	0.749	0.009	0.43	0.758
NOVDD046	VAR000436	1	2	1	0.561	0.007	0.3	0.568
NOVDD046	VAR000437	2	3	1	0.42	0.003	0.18	0.423
NOVDD046	VAR000438	3	4	1	0.482	0.006	0.26	0.488
NOVDD046	VAR000439	4	5	1	0.444	0.005	0.29	0.449
NOVDD046	VAR000440	5	6	1	1.2	0.005	0.39	1.205
NOVDD046	VAR000441	6	7	1	0.476	0.002	0.08	
NOVDD046	VAR000442	7	8	1	2.44	0.011	0.24	2.451
NOVDD046	VAR000443	8	9	1	1.13	0.002	0.08	1.132
NOVDD046	VAR000444	9	10	1	1.06	0.004	0.11	1.064
NOVDD046	VAR000445	10	11	1	0.591	0.004	0.07	0.595
NOVDD046	VAR000446	11	12	1	1.02	0.007	0.09	1.027
NOVDD046	VAR000447	12	13	1	0.164	0.005	0.03	0.169
NOVDD046	VAR000448	13	14	1	0.054	0.002	0.01	
NOVDD046	VAR000449	14	15	1	0.005	0.002	0.005	
NOVDD046	VAR000450	15	16	1	0.006	0.002	0.01	0.008
NOVDD046	VAR000451	16	1 <i>7</i>	1	0.007	0.002	0.01	
NOVDD046	VAR000452	17	18	1	0.006	0.002	0.005	
NOVDD046	VAR000453	18	19	1	0.014	0.002	0.01	0.016
NOVDD046	VAR000454	19	20	1	0.037	0.002	0.01	†

BHID	Sample No	From (m)	To (m)	Length (m)	Zn %	Pb %	Zn % (ox)	Zn+Pb %
NOVDD046	VAR000455	20	21	1	0.005	0.002	0.01	
NOVDD046	VAR000456	21	22	1	0.293	0.011	0.05	0.304
NOVDD046	VAR000457	22	23	1	2.02	0.04	0.19	2.06
NOVDD046	VAR000458	23	24	1	2.8	0.143	0.15	2.943
NOVDD046	VAR000459	24	25	1	0.01	0.002	0.01	
NOVDD046	VAR000460	25	26	1	2.91	0.649	0.16	3.559
NOVDD046	VAR000461	26	27	1	13.45	4.99	0.3	18.44
NOVDD046	VAR000463	27	28	1	32.8	5.89	0.33	38.69
NOVDD046	VAR000465	28	29	1	16	37	0.27	53
NOVDD046	VAR000467	29	30	1	28.3	19.05	0.34	47.35
NOVDD046	VAR000469	30	31	1	15.75	0.287	0.18	16.037
NOVDD046	VAR000470	31	32	1	4.01	0.066	0.39	4.076
NOVDD046	VAR000471	32	33	1	21	1.945	0.25	22.945
NOVDD046	VAR000472	33	34	1	4.72	0.188	0.16	4.908
NOVDD046	VAR000473	34	35	1	9.68	1.255	0.19	10.935
NOVDD046	VAR000474	35	36	1	26.5	5.66	0.29	32.16
NOVDD046	VAR000475	36	37	1	0.693	0.018	0.06	0.711
NOVDD046	VAR000476	37	38	1	31.6	1.675	0.26	33.275
NOVDD046	VAR000477	38	39	1	32.3	2.89	0.27	35.19
NOVDD046	VAR000478	39	40	1	12.55	0.754	0.22	13.304
NOVDD046	VAR000479	40	41	1	3.72	0.516	0.17	4.236
NOVDD046	VAR000480	41	42	1	0.067	0.006	0.03	0.073
NOVDD046	VAR000481	42	43	1	1.52	0.285	0.14	1.805
NOVDD046	VAR000482	43	44	1	11.15	2.25	0.26	13.4
NOVDD046	VAR000483	44	45	1	11.9	1.56	0.57	13.46
NOVDD046	VAR000485	45	46	1	0.308	0.079	0.06	0.387
NOVDD046	VAR000486	46	47	1	0.063	0.012	0.03	0.075
NOVDD047	VAR000302	23.6	24.55	0.95	0.056	0.002	0.03	0.058
NOVDD047	VAR000303	24.55	25.55	1	9.85	0.116	0.54	9.966
NOVDD047	VAR000304	25.55	26.55	1	4.33	0.285	0.36	4.615
NOVDD047	VAR000305	26.55	27.55	1	0.086	0.005	0.04	0.091
NOVDD049	VAR000306	14	15	1	0.153	0.042	0.11	0.195
NOVDD049	VAR000307	15	16	1	0.97	0.002	0.12	0.972
NOVDD049	VAR000308	16	1 <i>7</i>	1	11.2	0.245	0.26	11.445
NOVDD049	VAR000309	17	18	1	0.053	0.002	0.03	0.055
NOVDD051	VAR000332	12	13	1	0.916	0.006	0.08	0.922